一院 CALT 基金项目指南

项目编号	CALT2022-01
项目名称	面向飞行器无线信息网络的"零信任"安全架构研究
	针对飞行器无线信息网络面临的安全架构不完善、可
	信性不足等问题,突破基于零信任的分布式信任管理
	模型、自适应动态可信度量、基于持续可信评估和动
研究目标	态授权的访问控制等关键技术,构建新质的面向飞行
与内容	器无线信息网络的"零信任"安全架构,补齐当前信
	息安全正向设计的短板,为飞行器网络化、体系化协
	同运用提供可信安全支撑。
	(1)提出相对完善的飞行器无线信息网络"零信任"
	安全架构;
主要技术指标	(2)提出适用于飞行器信息网络的信任管理模型和
	可信度量方法;
	(3)提出不少于2种基于信任的访问控制模型。
h m -/ h	技术研究报告 1 份、SCI/EI 论文 2 篇、数字仿真软
成果形式	件1套
完成时间	2023年9月
预计经费	30 万元
	研究发展部 常诚
技术对接人	座机: 010-88520370
	手机: 13051128268

项目编号	CALT2022-02
项目名称	面向无人飞行器集群协同的信息服务技术
	研究飞行器集群在间歇弱连接等复杂动态网络环境
	下的协同互操作,突破异构单元虚拟化统一表征、分
研究目标	布式网络资源管理与服务方法、面向动态网络的自适
与内容	应信息分发策略等关键技术,解耦资源与其部署平
	台,实现集群资源的全局可见、可用,解决复杂环境
	下多飞行器之间机器到机器的高效互操作问题。
	(1)揭示机器之间语义互操作机理,支持异构单元
之亜比以比片	种类不少于6种;
主要技术指标	(2)辨识面向任务的分布式资源管理与服务方法;
	(3) 突破多因素约束下自适应信息分发的技术。
成果形式	技术研究报告1份、数字仿真软件1套
完成时间	2023年9月
预计经费	30 万元
	研究发展部 吴新峰
技术对接人	座机: 010-68769276
	手机: 18612838921

项目编号	CALT2022-03
项目名称	基于近水面爆炸波面控制的航行体高速入水仿真研
	究
	建立近自由液面水下爆炸动力学多相流模型, 捕捉爆
	炸气泡与自由液面全非线性耦合特性,掌握气泡引起
研究目标	的水冢演化规律,获得气泡在自由液面处破碎的临界
与内容	条件。在此基础上,掌握跨介质航行体在爆炸诱导的
	特定波面处的入水载荷与弹道特性,为实现跨介质航
	行体可控稳定航行提供技术支撑。
主要技术指标	(1) 捕捉爆炸气泡与自由液面非线性耦合现象;
	(2)爆炸诱导的波面演化特征参数计算误差不超过
	15%;
	(3)入水弹道仿真特征值与试验误差不超过15%;
	(4)实现爆炸诱导波面处高速入水数值仿真计算。
比甲亚子	基于近水面爆炸波面控制的航行体高速入水仿真报
成果形式 	告、近自由液面水下爆炸动力学模型和多相流模型
完成时间	2023年9月
预计经费	30 万元
技术对接人	研究发展部 王大鹏
	座机: 010-68752713
	手机: 13241749877

项目编号	CALT2022-04
项目名称	水下微气膜动态调控与减阻方法研究
	研究表面微纳结构主导的气膜动态调控与减阻方法,
研究目标	突破材料表面微纳结构构筑、气体形成、捕获、动态
与内容	界面调控的减阻技术实现方案,解决水下高速航行减
	阻率低、稳定性差等技术难题。
	(1) 阐明表面微气膜动态调控的气润滑减阻机理
	(2)设计出表面积 80cm²以上的减阻几何样件
主要技术指标	(3)水下气膜覆盖面积不低于90%
	(4)样件在不低于 20m/s 的实验流速下减阻率高于
	15%
成果形式	研究报告、原理模型、样件
完成时间	2023年9月
预计经费	30 万元
	总体设计部 张晨星
技术对接人	座机: 010-68753823
	手机: 18513392356

项目编号	CALT2022-05
项目名称	超空泡航行器动力学模型及控制模型研究
	建立速度 200 节超空泡航行器航行动力学模型,进行
研究目标	通道解耦和线性化处理,提出操稳特性分析方法,为
与内容	超空泡航行器总体设计和控制律设计奠定理论基础。
	所建立的动力学模型符合实际
	(1)轴向速度仿真与现有大口径样机试验结果对比
之亜比以比片	误差小于 10%;
主要技术指标	(2)能反映航行过程中的尾拍现象,与现有大口径
	样机试验结果对比,尾拍类型一致,频率误差不超过
	15%。
成果形式	研究报告,动力学模型、仿真算例
完成时间	2023年9月
预计经费	30 万元
技术对接人	战术事业部 杜肖
	座机: 010-68769074
	手机: 15201227589

项目编号	CALT2022-06
项目名称	低过载下贮箱内推进剂晃动特性姿控动力学建模技
	术
	研究升力式运载器无动力返回过程中贮箱内剩余推
	进剂在低过载、小贮箱倾角工况下的运动特性和动力
可欠日 与	学建模机理,突破返回段剩余推进剂晃动运动数学建
研究目标	模和推进剂晃动对整个运载器质量特性耦合影响建
与内容	模评估等关键技术,实现返回段剩余推进剂运动特性
	及干扰影响的参数化设计,解决运载器返回过程中存
	在的晃动特性影响未知及建模机理认识不清问题。
	(1)揭示返回段低过载、小贮箱倾角下推进剂晃动
	机理,数学模型理论分析与有限元仿真结果误差不大
	于 15%;
主要技术指标	(2)辨识推进剂晃动对整机质量特性关键参数的影
	响规律;
	(3)突破低过载、小贮箱倾角工况下大幅推进剂晃
	动建模及稳定控制技术。
成果形式	研究报告、软件、模型
完成时间	2023年9月
预计经费	30 万元
	空天业务部 韩鹏鑫
技术对接人	座机: 010-68198882
	手机: 13522028415

项目编号	CALT2022-07
项目名称	考虑稀薄气体效应和化学非平衡效应的飞行器气动
	热环境快速预测技术
	针对飞行器存在的局部稀薄效应和化学非平衡效应,
	开展气动热环境工程预示算法的深入研究,建立一套
研究目标	切实可行的兼具效率和精度的关键部位气动热工程
与内容	算法,并通过数值模拟技术验证算法精度。解决热环
	境工程预示无法精确评估稀薄效应和高温非平衡效
	应的问题,提高热环境评估效率。
主要技术指标	(1)建立考虑稀薄气体效应和化学非平衡效应的气
	动热环境快速预测方法;
工女议小组你	(2)分析方法具有普适性,并通过数值模拟和试验
	数据验证,最大误差不超过 20%。
成果形式	研究报告、模型
完成时间	2023年9月
预计经费	30 万元
	空天业务部 尹琰鑫
技术对接人	座机: 010-68384054
	手机: 18810006217

项目编号	CALT2022-08
项目名称	高升阻比高装填低目标特征高速飞行器外形设计研
	究
	开展兼顾低目标特征与气动性能的外形设计研究,通
研究目标	过外形设计大幅降低典型方向上的 RCS,并在飞行过
与内容	程中具备良好的升阻比和操稳特性。对比常规外形与
	低目标特征设计外形在典型方向的 RCS。
主要技术指标	(1)飞行器典型状态升阻比满足设计要求;
	(2)飞行器典型方向 RCS 相较之前同类型飞行器降
	低 5dB;
	(3)飞行器满足 1.0m³载荷装填空间要求。
成果形式	研究报告、模型
完成时间	2023年9月
预计经费	30 万元
	临空部 赤丰华
技术对接人	座机: 010-68199206
	手机: 18518373319

项目编号	CALT2022-09
项目名称	大攻角下高速飞行器非定常伴随优化设计
	针对类乘波体高速飞行器大攻角下诱导的非定常气
	动问题,建立基于 DES 类方法的非定常伴随方法和优
研究目标	化平台,对飞行器头部及控制舵开展外形优化设计,
与内容	减轻或消除大攻角分离涡对控制舵非定常干扰影响,
	提高控制舵舵效,有利防止控制舵大攻角下出现舵效
	反效现象, 为飞行器设计发展提供技术支撑。
	(1)基于贝叶斯统计理论发展适用于高速大攻角分
	离流动的 DES 类方法;
	(2) 高速大攻角非定常气动特性设计指标及多目标
	融合技术研究,典型状态优化后外形气动效率提高不
主要技术指标	低于 5%;
	(3)基于 DES 类方法的非定常伴随方法和优化平台
	研究;
	(4)开展高速飞行器头部及控制多局部非定常优化
	设计。
成果形式	研究报告、算法
完成时间	2023年9月
预计经费	30 万元
	临空部 李铮
技术对接人	座机: 010-88521601
	手机: 18612199577

项目编号	CALT2022-10
项目名称	基于非结构网格的高精度跨流域高马赫数飞行器气
	动特性预示技术
	本项目面向高马赫数飞行器在高空稀薄流域气动特
研究目标	性预示困难这一个共性问题,建立基于非结构网格的
与内容	高精度跨流域气动特性预示技术,为飞行器更加精细
	的研制提供方法和工具支撑。
	(1) 在统一气体动理学方法的框架下,发展适用于
	高马赫数的激波捕捉方法; 并采用先进的通量重构格
	式离散统一气体动理学方程,建立高马赫数跨流域气
子田廿七松仁	动特性的预示方法;
主要技术指标	(2)基于该方法开发适用于非结构网格的流场求解
	器,并可以进行3阶精度的并行计算;
	(3)该流场求解器可以给出飞行马赫数大于 5,飞
	行高度为 50 到 100 km 范围内的飞行器流场。
成果形式	研究报告和计算程序
完成时间	2023年9月
预计经费	30 万元
	临空部 赵隆祥
技术对接人	座机: 010-68199517
	手机: 15801623856

项目编号	CALT2022-11
项目名称	基于知识图谱的装备运用保障专家知识支持技术
	研究基于模型的小样本故障信息专家知识系统构建
	技术,突破复杂装备故障本体建模方法、故障信息标
研究目标	记方法、故障数据特征提取方法,解决故障样本量少、
与内容	先验知识种类繁杂等问题,通过主动学习策略,自动
	生成故障知识图谱深度学习模型,实现基于有限经验
	的有效知识推送。
	(1)提出小样本故障信息专家知识的建模方法,并
主要技术指标	构建故障信息本体模型;
土安权小佰你	(2) 小样本命名实体识别准确率达到 90%;
	(3)提出后验数据故障信息自完善模型。
成果形式	研究报告、软件原型
完成时间	2023年9月
预计经费	30 万元
	装备综合保障中心 谢汶姝
技术对接人	座机: 010-68380907
	手机: 13811523565

项目编号	CALT2022-12
项目名称	基于实测数据的 X 射线脉冲星导航实时性和精度提
	高技术
	X射线脉冲星信息处理与导航的实时性和精度是制约
	工程应用的关键技术,需要根据在轨飞行器应用需
元 农日长	求,基于我国慧眼卫星和美国 NICER 在轨实测数据,
研究目标	研究脉冲星轮廓折叠、TOA 时间的获取新方法,以及
与内容	基于多颗脉冲星的导航方法,达到缩短积分时间,提
	高信息处理与导航实时性和精度的目的,支撑脉冲星
	导航技术的工程应用。
	(1)/ 型 X 射线探测器面积不低于100cm2 条件下,
	T0A 精度优于 1μ;
主要技术指标	(2) 基于 TMS320C6678 信息处理器、X 射线脉冲信
	息处理与导航运算周期不大于10s;
	(3) X 射线脉冲星导航定位精度不低于 200m(1σ)。
	X射线脉冲星在轨数据、仿真模型、研究报告、基于
成果形式	慧眼卫星和NICER在轨X射线脉冲星数据的试验分析
	报告和软件。
完成时间	2023年9月
预计经费	30 万元
	十二所 踪华
技术对接人	座机: 010-88528206
	手机: 13810597110

项目编号	CALT2022-13
项目名称	采用注意力机制和自适应配准的红外超分辨成像技
	术研究
	研究采用注意力机制的单帧超分辨生成对抗网络和
研究目标	多帧自配准双路网络,突破多帧红外图像自配准关键
与内容	技术,实现采用注意力机制的红外超分辨成成像,解
	决红外探测器工艺受限带来的分辨率低问题。
	(1) 突破多帧红外图像自配准技术,输入图像 128
	×160, 输出图像 256×320 时, PSNR: 30dB; 512×640
	时, PSNR: 27dB;
主要技术指标	(2)设备算力满足浮点数运算精度大于 11TFlops 情
	况下, 算法实现≮25fps 的有效输出;
	(3)实现高速稳定多帧图像自配准输入输出,输入
	输出单帧时间≯40ms。
成果形式	研究报告、算法软件
完成时间	2023年9月
预计经费	30 万元
	十二所 周帅军
技术对接人	座机: 010-683888457
	手机: 18810925308

项目编号	CALT2022-14
项目名称	飞行器组网低检测通信与定位一体化技术
	研究飞行器在复杂电磁环境下的低检测通信定位一
	体化技术,突破复杂电磁环境基因化表达机理、基于
研究目标	非合作电磁载体利用的地检测波形、通信定位一体化
与内容	设计等关键技术,实现强对抗环境下的飞行器通信与
	相对定位,解决对关键目标协同打击环境中非合作电
	磁资源利用不够的问题。
	(1) 可利用的非合作电磁载体数量大于等于 2 种;
主要技术指标	(2)通信发包成功率大于等于90%;
	(3)相对定位精度小于等于 20m。
成果形式	研究报告、软件、模型
完成时间	2023年9月
预计经费	30 万元
	十四所 耿健
技术对接人	座机: 010-68381139
	手机: 15801361050

项目编号	CALT2022-15
项目名称	液膜冷却中的复杂多相流能量交换机制研究
	研究飞行器高温边界层中的液膜冷却过程,建立液体
	喷流与高温气流及固壁之间的相互作用数值模拟方
研究目标	法,研究液膜冷却过程中的传热传质过程,和液膜演
与内容	化的能量交换机制,最终揭示液膜冷却过程中的关键
	控制因素并建立数值模拟方法。
	(1) 突破高温气流中液膜铺展破碎及相变的数值模
	拟技术;
主要技术指标	(2)揭示液体铺展破碎的机理,提炼关键指标参数,
工女权小组你	与试验结果相比不大于 20%;
	(3)形成液膜铺展蒸发防热的抽象数学模型,建立
	液膜生成控制变量与防热效果之间的关系。
成果形式	研究报告,模型,可执行程序
完成时间	2023年9月
预计经费	30 万元
技术对接人	十四所 李旭东
	座机: 010-68381146
	手机: 15330088966

项目编号	CALT2022-16
项目名称	车载数据驱动的某型底盘核心部件服役性能在役评
	估与健康状态智能监测技术研究
	研究某底盘核心子系统的多能域信息智能监测策略,
-T 12 1-1	突破某型底盘各子系统服役期间环境因素影响消除
研究目标	技术,实现某型底盘各子系统服役状态表征与深度特
与内容	征提取,解决各子系统服役状态异常预警与退化程度
	跟踪,实现在役早期异常检测与健康状态评估。
	(1) 至少针对底盘的两种子系统开展寿命试验,每
	个子系统至少积累两组全寿命试验;
主要技术指标	(2)针对底盘至少两种子系统构建性能退化指标,
	预测精度不低于 80%。
成果形式	研究报告,试验报告,预测模型,论文
完成时间	2023年9月
预计经费	30 万元
	十五所 曹向荣
技术对接人	座机: 010-68382719
	手机: 13126850526

项目编号	CALT2022-17
项目名称	大流量定差减压阀的液动力分析和补偿技术研究
	研究大流量定差减压阀的流入节流阀口和流出节流
	阀口的液动力变化规律,研究液动力补偿的液压阀结
研究目标	构措施,为 800L 大流量定差减压阀的结构设计提供
与内容	理论依据,掌握流量液压阀液动力分析和补偿设计方
	法,解决液压阀在大流量和高压差工况下公开下阀口
	异常关闭问题。
主要技术指标	(1)揭示定差减压阀的流入节流阀口和流出节流阀
	口的液动力机理,典型理论(仿真)分析与试验结果
	误差不大于 20%;
	(2)提出液动力补偿的液压阀结构措施方法,流量
	800L/min, 压力 25MPa, 补偿压差不小于 0.7MPa;
	(3)突破大流量液压阀液动力分析和补偿设计方法。
成果形式	研究报告、样机、三维模型、仿真模型
完成时间	2023年9月
预计经费	30 万元
	十五所 高亚东
技术对接人	座机: 010-88524561
	手机: 18513810997

项目编号	CALT2022-18
项目名称	空间机器人在轨操作技能智能学习技术研究
	针对空间智能机构在轨任务对自主操作技术的迫切
-T +	需求,研究空间智能机构的视/力多源信息融合的自
研究目标	主操作技术、基于 DRL 模型的复杂操作学习技术、基
与内容 	于技能获取与迁移等关键技术,开展模拟空间环境下
	的在轨操作智能学习技术试验,完成关键技术验证。
	(1) 仿真场景任务成功率>90%,地面演示系统任务
	完成成功率>80%;
主要技术指标	(2)不同任务场景下的模型收敛次数<8×10 ⁵ 次;
	(3)空间机器人单步动作规划时间<1ms。
成果形式	研究报告、仿真模型、训练模型
完成时间	2023年9月
预计经费	30 万元
技术对接人	十八所 梁斌焱
	座机: 010-6875331
	手机: 15801246203

项目编号	CALT2022-19
项目名称	可定义双稳态智能变形机构及驱动技术
	面向智能变形机构的高刚度、高速度和多形态需求,
	利用双稳态机构大变形、大位移的特点,通过智能材
研究目标	料技术与双稳态驱动技术的深度融合, 开展可定义智
与内容	能变形材料与双稳态机构的一体化设计、智能变形机
	构的变拓扑动力学与控制技术研究,并构建一种多维
	度、高刚度智能变形机构的设计理论与方法。
) = 11 b 1k l-	(1)线性变形量: ≥200mm, 变形时间≤1s;
主要技术指标	(2)变形负载能力: ≥200N。
成果形式	研究报告、原理样机、发明专利
完成时间	2023年9月
预计经费	30 万元
技术对接人	十八所 宋洪舟
	座机: 010-68751441
	手机: 15210832470

项目编号	CALT2022-20
项目名称	全域复杂环境试验数字化构建方法研究
	针对试验鉴定中实装试验无法全面覆盖复杂耦合环
	境、极限边界等问题, 开展全域自然、力学、电磁等
研究目标	复杂环境试验的数字化构建方法研究,提出装备试验
与内容	鉴定数字化典型软件功能需求,发展复杂环境模型建
	模方法,探索多物理场耦合高精度仿真技术,为最终
	实现"数实结合"全域复杂环境试验考核提供支撑。
	(1) 形成通用质量特性、力学、电磁兼容性等试验
	鉴定数字化软件的功能需求清单;
主要技术指标	(2)给出 2-3 种典型装备复杂环境模型建模方法,
	复杂环境模拟与实际环境综合偏差小于 25%;
	(3)初步形成全域复杂环境试验数字化构建方法。
成果形式	研究报告、模型,科技论文
完成时间	2023年9月
预计经费	30 万元
	七 二所 王鹏辉
技术对接人	座机: 010-68382949
	手机: 13811035125

项目编号	CALT2022-21
项目名称	多场耦合的极端环境下多尺度变形场动态高精度测
	量技术研究
	研究高性能变形载体制备核心技术,确保高温与振动
	/冲击耦合环境下制备的变形载体不脱落、不氧化、
研究目标	性能稳定、对比度高,同时对待测材料附加效应小。
与内容	解决振动冲击过程中刚体运动影响、以及高温环境下
	热畸变的影响问题, 实现极端环境下变形场高速高精
	度测量。
	(1)提出极端环境下使用的光栅、点阵、散斑多尺
主要技术指标	度变形载体成熟的制备技术;
	(2)制备的多尺度变形载体具有高的界面结合强度,
	抗振动/冲击、耐高温,最高可承受过1900℃高温环
	境,在超过200Hz振动载荷下性能稳定;
	(3)高温与振动多场耦合环境下多尺度变形场测量
	精度优于10μm,应变场测量灵敏度优于150微应变。
	(4)高温环境下热空气畸变消除技术
成果形式	研究报告、专利、科技论文
完成时间	2023年9月
预计经费	30 万元
	七〇二所 刘函
技术对接人	座机: 010-68383175
	手机: 13811823108

项目编号	CALT2022-22
项目名称	碳纤维/聚酰亚胺树脂界面在服役环境下的失效及强
	 化机制研究
	针对新一代航天器对轻质耐高温聚酰亚胺复合材料
	主承力构件的应用需求,开展碳纤维增强聚酰亚胺树
	脂基复合材料在高温短时和低温长时两种环境下的
	界面性能演化规律,为不同耐温等级聚酰亚胺树脂基
	复合材料在实际服役环境下的性能老化预测和寿命
研究目标	预测提供实验数据和理论支撑,同时基于微脱粘实验
与内容	分析碳纤维/聚酰亚胺树脂界面剪切强度及破坏形貌
	分析, 开展聚酰亚胺树脂基复合材料的界面形成机理
	及影响因素研究,提出聚酰亚胺复合材料中纤维/树
	脂界面多层次协同强化方法,解决聚酰亚胺基复合材
	料应用的关键瓶颈技术,推动聚酰亚胺复合材料在航
	天装备主承力构件上的应用推广
	(1)突破耐高温聚酰亚胺基复合材料界面量化表征
	与评价技术;
	(2)揭示耐高温聚酰亚胺基复合材料成型过程中的
主要技术指标	界面形成规律;
	(3)揭示耐高温聚酰亚胺基复合材料在服役环境下
	的界面性能演化规律
	(4)提出聚酰亚胺复合材料界面强化方法
 成果形式	(1)试样:多批次碳纤维/聚酰亚胺基复合材料微脱
, 4.1-7.2 F 4	粘试样

	(2) 试验方法: 针对不同耐温等级聚酰亚胺的微脱
	粘试样制备工艺及测试方法
	(3) 研究报告: 耐高温聚酰亚胺基复合材料在服役
	环境下的失效及强化机制研究
完成时间	2023年9月
预计经费	30 万元
	七〇三所 李学宽
技术对接人	座机: 010-68380531
	手机: 18810447179

项目编号	CALT2022-23
项目名称	光栅投影测量高光反射抑制技术
火口石林	针对液体火箭发动机喷注盘等型号产品高反光表面
	对投影光栅方法测量中存在的高光反射和子表面互
	反射效应、离焦模糊效应的影响,开展光照反射模型、
	基于多曝光融合和自适应光栅投影方法的高光抑制
研究目标	方法、子表面互反射光栅条纹解耦合方法、大纵深表
与内容	面离焦抑制方法等研究,采用原理分析、模型算法建
	立以及理论模拟和试验验证的途径,建立光栅投影高
	光反射抑制测量装置,解决利用光栅投影测量方法对
	高反光零件表面无法直接可靠地测量的问题。
	(1)揭示金属加工表面高光反射和子表面互反射造
	成的分布离散耀斑对光栅投影测量的影响机理;
	(2)基于多曝光融合和自适应光栅投影方法的高光
	抑制方法,适用于表面粗糙度≤0.8μm的零件;
主要技术指标	(3)子表面互反射光栅条纹解耦合方法,适用于简
	单直角平面和圆弧面;
	(4) 高光反射抑制测量样机 1 套, 测量范围≤1m,
	坐标测量误差≤5μm+5μm/m,形状测量误差≤10μ
	m, 重复性 < 5 μ m。
4 田 水 4	研究报告 2 份; 理论模型 2 套; 高光反射抑制软件算
成果形式	法1套; 高光反射抑制测量装置1套;
完成时间	2023年9月
预计经费	30 万元
	一〇二所 高越
技术对接人	座机: 010-68769887
	手机: 13693085612

项目编号	CALT2022-24
项目名称	基于超材料的太赫兹波束调控技术研究
研究目标 与内容	研究太赫兹波段的亚波长散射体或通孔结构与太赫兹波段极化、相位、吸收系数作用关系,研究超材料晶格单元间的电磁耦合与波束调控设计方法,实现材料宏观电磁特性的调节,研制基于超材料的太赫兹波束调控器件,为太赫兹无损检测应用提供支撑。
主要技术指标	(1)典型太赫兹超材料设计仿真模型,模型可信度 大于80%;(2)太赫兹波束调制损耗小于20%。
成果形式	太赫兹超材料及其应用调研报告、典型太赫兹超材料设计仿真模型一套、研究总结报告、论文 2 篇、太赫兹波束调控镜组一套。
完成时间	2023年9月
预计经费	30 万元
技术对接人	-○二所 刘林 座机: 010-68383059 手机: 13011011708

项目编号	CALT2022-25
项目名称	基于 A1 的焊缝质量图像监测技术
	通过本项目研究,构建一个焊缝图像获取系统,并开
研究目标	发一个基于人工智能技术的焊接成形缺陷图像分析
与内容	系统,实现焊缝质量的在线监测,为解决薄壁件焊缝
	质量问题提供新的技术途径。
主要技术指标	(1)图像监测分辨率达到 0.2mm;
	(2)焊漏检测率 98%以上。
成果形式	(1) 技术总结报告;
	(2)分析软件。
完成时间	2023年9月
预计经费	30 万元
	二一一厂 邹鹤飞
技术对接人	座机: 010-68750487
	手机: 13521759864

项目编号	CALT2022-26
项目名称	激光增材制造三维温度场的机器学习预测
	针对航天领域大型构件激光熔化沉积工艺试验量大、
	缺乏熔池温度信息等难题,研究增材制造过程三维温
研究目标	度场重构技术,突破无训练数据下温度场求解 PINN
	算法、熔池三维形状预测等关键技术,实现沉积过程
与内容	温度动态演化的预测,解决激光熔化沉积增材制造系
	统的温度在线预测与监测问题,为高性能构件增材制
	造提供数字化、智能化技术支撑。
主要技术指标	(1) 对比有限元法模拟,熔池最高温度的预测误差
	小于 5%;
	(2)建立激光熔化沉积过程三维温度场预测的 PINN
	算法;
	(3)实现熔池三维几何尺寸的快速预测与分析。
成果形式	研究报告、模型、专利、论文
完成时间	2023年9月
预计经费	30 万元
技术对接人	二一一厂 周庆军
	座机: 010-88530534
	手机: 18811560667

项目编号	CALT2022-27
项目名称	高性能镁合金空心复杂结构电加热成形/连接技术
	本项目针对空间舱门对轻量化的迫切需求,开展高性
	能镁合金空心复杂结构成形/扩散连接研究,突破稀
	土镁合金高可靠电辅助扩散连接工艺及主动换热和
研究目标	强度性能的综合评价方法、大尺寸镁合金空心复杂结
与内容	构脉冲电流辅助成形/扩散连接控制及缺陷抑制技
	术、脉冲电流辅助的高压气胀蠕变时效校形控制及组
	织性能优化技术三项关键技术,研制出镁合金空心复
	杂结构的舱门构件。
	(1) 零件长度≥600mm;
	(2) 焊合率大于 90%;
	(3)成形后晶粒长大不超过1级;
主要技术指标	(4)型面精度 0.5mm,平面度 0.2mm;
工安议小相似	(5)成形后材料室温条件下σb≥370MPa, σs≥
	320MPa, δ ≥ 8%;
	(6)成形后材料在 150℃条件下σb≥280MPa, σs
	$\geq 200 MPa$, $\delta \geq 15\%$.
	(1)技术总结报告1份;
成果形式	(2) 样件1件;
MANDI	(3)工装1套;
	(4) 专利 1 项.
完成时间	2023年9月
预计经费	30 万元
技术对接人	ニーー厂 王大刚
	座机: 010-68750399
	手机: 18101277907

项目编号	CALT2022-28
项目名称	基于数字孪生的细长薄壁零件高效加工技术研究
	本项目以多级推杆等细长薄壁零件为研究对象,解决
	加工变形产生的精度低及生产效率低等问题,拟达
	成:
	(1)通过基础性能试验、机理研究、仿真优化和工
	艺试验,结合加工过程切削力、功率、加工误差等工
	况数据,建立物理空间与信息空间融合的多级杆件加
	工过程的数字孪生模型,在此基础上开展加工过程的
	多工序连续工艺仿真与模型迭代优化方法研究。
	(2) 搭建基于多传感器融合的多级推杆加工平台,
研究目标	实现数字孪生模型的物理空间与信息空间时空映射
与内容	关系,在此基础上,进行基于数字孪生的薄壁筒件工
	艺优化技术研究,突破加工变形仿真预测、集成工艺
	路线优化、加工轨迹/顺序/余量分布优化、工艺参数
	优化、误差补偿方法等变形控制关键技术,形成数字
	孪生模型驱动的加工工艺过程闭环智能调控模式。
	(3)通过上述关键技术研究,形成机理模型与现场
	数据混合驱动的多级推杆变形预测方法、基于变形仿
	真预测与误差补偿方法为一体的多级推杆类零件高
	质高效加工技术,支撑该零件加工工艺智能化设计,
	提升工厂的工艺设计水平。
	(1)形成基于数字孪生的加工变形仿真预测方法,
	揭示多工序全流程多级推杆加工变形规律仿真结果
主要技术指标	不低于 80%;
	(2)通过工艺路线优化、加工轨迹/顺序/余量分布
	优化、工艺参数优化、装夹优化,形成变形误差自适

	应控制方法,变形量满足加工要求,产品制造周期缩
	短 50%;
	(3)形成基于变形仿真预测与误差补偿为一体的细
	长薄壁类零件高效加工方法,产品一次交验合格率达
	到 98%以上。
成果形式	研究报告、加工样件、仿真模型、工艺规范
完成时间	2023年9月
预计经费	30 万元
	五一九厂 金新
技术对接人	座机: 0355-3912942
	手机: 18335530616